BayesNet: Enhancing UAV-Based Remote Sensing Scene Understanding with Quantifiable Uncertainties

Author:

Sagar A. S. M. Sharifuzzaman1ORCID,Tanveer Jawad2,Chen Yu3,Dang L. Minh4,Haider Amir1ORCID,Song Hyoung-Kyu4ORCID,Moon Hyeonjoon2ORCID

Affiliation:

1. Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea

2. Department of Computer Science and Engineering, Sejong University, Seoul 05006, Republic of Korea

3. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

4. Department of Information and Communication Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea

Abstract

Remote sensing stands as a fundamental technique in contemporary environmental monitoring, facilitating extensive data collection and offering invaluable insights into the dynamic nature of the Earth’s surface. The advent of deep learning, particularly convolutional neural networks (CNNs), has further revolutionized this domain by enhancing scene understanding. However, despite the advancements, traditional CNN methodologies face challenges such as overfitting in imbalanced datasets and a lack of precise uncertainty quantification, crucial for extracting meaningful insights and enhancing the precision of remote sensing techniques. Addressing these critical issues, this study introduces BayesNet, a Bayesian neural network (BNN)-driven CNN model designed to normalize and estimate uncertainties, particularly aleatoric and epistemic, in remote sensing datasets. BayesNet integrates a novel channel–spatial attention module to refine feature extraction processes in remote sensing imagery, thereby ensuring a robust analysis of complex scenes. BayesNet was trained on four widely recognized unmanned aerial vehicle (UAV)-based remote sensing datasets, UCM21, RSSCN7, AID, and NWPU, and demonstrated good performance, achieving accuracies of 99.99%, 97.30%, 97.57%, and 95.44%, respectively. Notably, it has showcased superior performance over existing models in the AID, NWPU, and UCM21 datasets, with enhancements of 0.03%, 0.54%, and 0.23%, respectively. This improvement is significant in the context of complex scene classification of remote sensing images, where even slight improvements mark substantial progress against complex and highly optimized benchmarks. Moreover, a self-prepared remote sensing testing dataset is also introduced to test BayesNet against unseen data, and it achieved an accuracy of 96.39%, which showcases the effectiveness of the BayesNet in scene classification tasks.

Funder

National Research Foundation of Korea

Institute of Information and communications Technology Planning and Evaluation

Ministry of Agriculture, Food and Rural Affairs

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3