Remote Sensing Image Classification: A Comprehensive Review and Applications

Author:

Mehmood Maryam12,Shahzad Ahsan2,Zafar Bushra3ORCID,Shabbir Amsa1,Ali Nouman1ORCID

Affiliation:

1. Department of Software Engineering, Mirpur University of Science and Technology (MUST), Mirpur AJK 10250, Pakistan

2. Department of Computer and Software Engineering, National University of Sciences and Technology, Islamabad, Pakistan

3. Department of Computer Science, Government College University, Faisalabad 38000, Pakistan

Abstract

Remote sensing is mainly used to investigate sites of dams, bridges, and pipelines to locate construction materials and provide detailed geographic information. In remote sensing image analysis, the images captured through satellite and drones are used to observe surface of the Earth. The main aim of any image classification-based system is to assign semantic labels to captured images, and consequently, using these labels, images can be arranged in a semantic order. The semantic arrangement of images is used in various domains of digital image processing and computer vision such as remote sensing, image retrieval, object recognition, image annotation, scene analysis, content-based image analysis, and video analysis. The earlier approaches for remote sensing image analysis are based on low-level and mid-level feature extraction and representation. These techniques have shown good performance by using different feature combinations and machine learning approaches. These earlier approaches have used small-scale image dataset. The recent trends for remote sensing image analysis are shifted to the use of deep learning model. Various hybrid approaches of deep learning have shown much better results than the use of a single deep learning model. In this review article, a detailed overview of the past trends is presented, based on low-level and mid-level feature representation using traditional machine learning concepts. A summary of publicly available image benchmarks for remote sensing image analysis is also presented. A detailed summary is presented at the end of each section. An overview regarding the current trends of deep learning models is presented along with a detailed comparison of various hybrid approaches based on recent trends. The performance evaluation metrics are also discussed. This review article provides a detailed knowledge related to the existing trends in remote sensing image classification and possible future research directions.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3