Mineral Identification Based on Multi-Label Image Classification

Author:

Wu Baokun,Ji XiaohuiORCID,He Mingyue,Yang Mei,Zhang Zhaochong,Chen Yan,Wang YuzhuORCID,Zheng XinqiORCID

Abstract

The identification of minerals is indispensable in geological analysis. Traditional mineral identification methods are highly dependent on professional knowledge and specialized equipment which often consume a lot of labor. To solve this problem, some researchers use machine learning algorithms to quickly identify a single mineral in images. However, in the natural environment, minerals often exist in an associated form, which makes the identification impossible with traditional machine learning algorithms. For the identification of associated minerals, this paper proposes a deep learning model based on the transformer and multi-label image classification. The model uses transformer architecture to model mineral images and outputs the probability of the existence of various minerals in an image. The experiments on 36 common minerals show that the model can achieve a mean average precision of 85.26%. The visualization of the class activation mapping indicates that our model can roughly locate the identified minerals.

Funder

Major Science and Technology Projects of PetroChina Southwest Oil & Gasfield Company

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3