Research on Grinding Characteristics and Comparison of Particle-Size-Composition Prediction of Rich and Poor Ores

Author:

Ma Shaojian,Li Hengjun,Shuai Zhichao,Yang Jinlin,Xu Wenzhe,Deng Xingjian

Abstract

The particle size composition of grinding products will significantly affect the technical and economic indexes of subsequent separation operations. The polymetallic complex ores from Tongkeng and Gaofeng are selected as the research object in this paper. Through the JK drop-weight test, the batch grinding test, and the population-balance kinetic model of grinding with the Simulink platform, the grinding characteristics of the two types of ores and the particle-size-composition prediction methods of grinding products are studied. The results show that the impact-crushing capacity of Tongkeng ore and Gaofeng ore are “medium” grade and “soft” grade, respectively. The crushing resistance of Tongkeng ore increases with the decrease in particle size, and the crushing effect is more easily affected by particle size than that of Gaofeng ore. For the same ore, the accuracy order of the three methods is: PSO–BP method > JK drop-weight method > BIII method. For the same method, only the BIII method has higher accuracy in predicting Gaofeng ore than Tongkeng ore, and other methods have better accuracy in predicting Tongkeng ore than Gaofeng ore. The prediction accuracy of the BIII method is inferior to that of the JK drop-weight method and the PSO–BP method and is easily affected by the difference in mineral properties. The PSO–BP method has a high prediction accuracy and fast model operation speed, but the accuracy and speed of the iterative results are easily affected by parameters such as algorithm program weight and threshold. The parameter-solving process of each prediction method is based on different simplifications and assumptions. Therefore, appropriate hypothetical theoretical models should be selected according to different ore properties for practical application.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3