Genesis of the Beixiang Sb-Pb-Zn-Sn Deposit and Polymetallic Enrichment of the Danchi Sn-Polymetallic Ore Belt in Guangxi, SW China

Author:

Wu Jing,Li Zhi,Zhu Minjie,Huang Wenting,Liao JuanORCID,Zhang Jian,Liang HuayingORCID

Abstract

Antimony deposits contain little Sn, whereas Sb and Pb are not the principally contained metal of granite-related Sn deposits. The Danchi Sn-metallogenic ore belt (DSOB) in southwestern China is characterized by Sn-Sb-Zn-Pb co-enrichment, yet the triggers are poorly constrained. The Beixiang deposit in the southern DSOB consists of stage I Sn-Zn and stage II Sb-Pb-Zn mineralization. Here, we analyzed the cassiterite U-Pb age, fluid inclusion H-O and sulfide Pb-S isotopes, and calcite trace elements of the Beixiang ores. By comparing with the Dachang and Mangchang Sn-polymetallic ore-fields within the DSOB, we constrained the timing of regional mineralization and revealed the processes causing the Sb-Pb co-enrichment. The cassiterite U-Pb dating yielded 90.6 ± 4.5 Ma (MSWD = 2.6), similar to the ages of the Dachang and Mangchang ore fields, indicating the Late Cretaceous mineralization event throughout the DSOB. The fluid inclusions from stage II ore have δ18OH2O (−2.8 to −7.8‰) and δDV-SMOW (−90.5 to −59.3‰), and the synchronous calcite features have low REE contents, upward-convex REE patterns, and weak Eu anomalies. These suggest that the ore fluids were derived from meteoric water and oil field brine, which dissolved S and Pb from local strata as recorded by sulfide sulfur (δ34SV-CDT = −6.2 to −4.0‰) and Pb isotopes. However, calcite from the stage I ore have higher REE contents and (La/Yb)N, with strong positive Eu anomalies, indicating that the Sn-rich ore fluids were released by greisenization of granite. Overall, we suggest that the combination of granitic magma- and oil field brine-derived fluids, rich in Sn-Zn and Sb-Pb-Zn, respectively, caused the co-enrichment of Sn-Sb-Pb-Zn in Beixiang and throughout the DSOB.

Funder

NSFC

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3