Protolith-Related Thermal Controls on the Decoupling of Sn and W in Sn-W Metallogenic Provinces: Insights from the Nanling Region, China

Author:

Yuan Shunda1,Williams-Jones Anthony E.2,Romer Rolf L.3,Zhao Panlao1,Mao Jingwen1

Affiliation:

1. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

2. Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal H3A 0E8, Canada

3. Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, D-14473 Potsdam, Germany

Abstract

Abstract The Nanling region of South China hosts the largest W-Sn metallogenic province in the world, accounting for more than 54% of global tungsten resources as well as important resources of tin and rare metals. An important feature of this province, which is shared by a number of other W-Sn metallogenic provinces, is that W deposits occur separately from Sn and Sn-W deposits, with the latter concentrated in the western part of the region (especially along the deep, NE-trending Chenzhou-Linwu fault) and the W deposits to the east of them. All the deposits are associated with ilmenite series, peraluminous granites. However, the granites associated with the Sn and Sn-W deposits can be distinguished from the W granites by their higher bulk-rock εNd values and their higher zircon εHf values. Most importantly, the Sn and Sn-W granites are characterized by higher zircon saturation temperatures (800 ± 20°C) than the W granites (650°–750°C). The Sn and Sn-W granites also contain abundant mantle-derived mafic microgranular enclaves, whereas such enclaves are rare in the W granites. A model is proposed in which the protolith to the W granites released W to the melt as a result of the breakdown of muscovite. The temperature of melting, however, was too low for biotite to melt. In the west, particularly along the Chenzhou-Linwu fault (the location of the Sn and Sn-W deposits), higher temperatures enabled the breakdown of both muscovite and biotite and the consequent release of both Sn and W to form Sn and Sn-W granites. This model, which is based on differences in the protolith melting temperature and thus mobilization temperatures for Sn and W, is potentially applicable to any Sn-W metallogenic province in which the Sn and Sn-W deposits are spatially separated from the W deposits.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3