Calibration and Impact of BeiDou Satellite-Dependent Timing Group Delay Bias

Author:

Zhang YizeORCID,Wang Hu,Chen Junping,Wang AhaoORCID,Meng Lingdong,Wang Ershen

Abstract

The accuracy of the timing group delay (TGD) transmitted in the broadcast ephemeris is an important factor that affects the service performance of a GNSS system. In this contribution, an apparent bias is found by comparing the orbit and clock difference using half-year data of the BeiDou navigation satellite system (BDS) broadcast ephemeris and precise post-processed products. The bias differs at each satellite on each frequency and shows a general systematic difference between BDS-2 and BDS-3. We attribute this to the satellite-dependent TGD bias of the BDS broadcast ephemeris, which is subsequently calibrated. Moreover, to calibrate the bias independently, a network solution strategy is proposed based on 87 globally distributed multi-GNSS experiment (MGEX) stations spanning 25 weeks. The estimated bias shows good agreement with the values observed from the orbit and clock comparison. For the validation of the bias, we compared the signal-in-space range error (SISRE) performance with and without the TGD bias correction. The results show that the SISRE of the BDS improved from 0.71, 0.81, and 1.40 m to 0.64, 0.66, and 0.64 m in the B1I, B3I, and B1I/B3I frequencies. For BDS-3, the SISRE is well within 0.50 m after the bias correction. To further validate the bias, a week’s data were collected at 97 globally distributed MGEX stations. When the TGD bias is corrected, the root mean square (RMS) of single point positioning (SPP) can be improved by 5.6, 8.4, and 21.6% in the B1I, B3I, and B1I/B3I frequencies. Meanwhile, the SISRE and SPP assessment results also indicate that the TGD bias should be corrected by each satellite rather than only corrected between BDS-2 and BDS-3.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3