Introducing the Azimuth Cutoff as an Independent Measure for Characterizing Sea-State Dynamics in SAR Altimetry

Author:

Altiparmaki Ourania1ORCID,Amraoui Samira2,Kleinherenbrink Marcel3ORCID,Moreau Thomas2,Maraldi Claire4,Visser Pieter N. A. M.1ORCID,Naeije Marc1

Affiliation:

1. Astrodynamics and Space Missions, Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands

2. Collecte Localisation Satellites, Ramonville-Saint-Agne, 31520 Toulouse, France

3. Geoscience and Remote Sensing, Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, The Netherlands

4. Centre National d’Études Spatiale, 31400 Toulouse, France

Abstract

This study presents the first azimuth cutoff analysis in Synthetic Aperture Radar (SAR) altimetry, aiming to assess its applicability in characterizing sea-state dynamics. In SAR imaging, the azimuth cutoff serves as a proxy for the shortest waves, in terms of wavelength, that can be detected by the satellite under certain wind and wave conditions. The magnitude of this parameter is closely related to the wave orbital velocity variance, a key parameter for characterizing wind-wave systems. We exploit wave modulations exhibited in the tail of fully-focused SAR waveforms and extract the azimuth cutoff from the radar signal through the analysis of its along-track autocorrelation function. We showcase the capability of Sentinel-6A in deriving these two parameters based on analyses in the spatial and wavenumber domains, accompanied by a discussion of the limitations. We use Level-1A high-resolution Sentinel-6A data from one repeat cycle (10 days) globally to verify our findings against wave modeled data. In the spatial domain analysis, the estimation of azimuth cutoff involves fitting a Gaussian function to the along-track autocorrelation function. Results reveal pronounced dependencies on wind speed and significant wave height, factors primarily determining the magnitude of the velocity variance. In extreme sea states, the parameters are underestimated by the altimeter, while in relatively calm sea states and in the presence of swells, a substantial overestimation trend is observed. We introduce an alternative approach to extract the azimuth cutoff by identifying the fall-off wavenumber in the wavenumber domain. Results indicate effective mitigation of swell-induced errors, with some additional sensitivity to extreme sea states compared to the spatial domain approach.

Funder

Delft University of Technology

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3