TMP-Net: Terrain Matching and Positioning Network by Highly Reliable Airborne Synthetic Aperture Radar Altimeter

Author:

Lu Yanxi1,Song Anna2ORCID,Liu Gaozheng1,Tan Longlong1,Xu Yushi1,Li Fang1,Wang Yao1,Jiang Ge1,Yang Lei2ORCID

Affiliation:

1. The Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621000, China

2. Tianjin Key Laboratory for Advanced Signal Processing, Civil Aviation University of China, Tianjin 300300, China

Abstract

Airborne aircrafts are dependent on the Global Navigation Satellite System (GNSS), which is susceptible to interference due to the satellite base-station and cooperative communication. Synthetic aperture radar altimeter (SARAL) provides the ability to measure the topographic terrain for matching with Digital Elevation Model (DEM) to achieve positioning without relying on GNSS. However, due to the near-vertical coupling in the delay-Doppler map (DDM), the similarity of DDMs of adjacent apertures is high, and the probability of successful matching is low. To this end, a novel neural network of terrain matching and aircraft positioning is proposed based on the airborne SARAL imagery. The model-driven terrain matching and aircraft positioning network (TMP-Net) is capable of realizing aircraft positioning by utilizing the real-time DDMs to match with the DEM-based DDM references, which are generated by a point-by-point coupling mechanism between the airborne routine and ground terrain DEM. Specifically, the training dataset is established by a numerical simulation method based on a semi-analytical model. Therefore, DEM-based DDM references can be generated by forward deduction when only regional DEM can be obtained. In addition to the model-based DDM generation, feature extraction, and similarity measurement, an aircraft positioning module is added. Three different positioning methods are designed to achieve the aircraft positioning, where three-point weighting exhibits the best performance in terms of positioning accuracy. Due to the fact that both the weighted triplet loss and softmax loss are employed in a cooperative manner, the matching accuracy can be improved and the positioning error can be reduced. Finally, both simulated and measured airborne datasets are used to validate the effectiveness of the proposed algorithm. Quantitative and qualitative evaluations show the superiority.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3