Changes in Vegetation NDVI and Its Response to Climate Change and Human Activities in the Ferghana Basin from 1982 to 2015

Author:

Zhang Heli12,Li Lu3,Zhao Xiaoen2,Chen Feng2,Wei Jiachang2,Feng Zhimin4,Hou Tiyuan2,Chen Youping2,Yue Weipeng2,Shang Huaming1,Wang Shijie2,Hu Mao2

Affiliation:

1. Institute of Desert Meteorology, China Meteorological Administration/Key Laboratory of Tree-Ring Physical and Chemical Research of China Meteorological Administration/Xinjiang Key Laboratory for Tree Ring Ecology, Urumqi 830002, China

2. Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China

3. Meteorological Observatory of Xinjiang Uygur Autonomous Region, Urumqi 830002, China

4. Xinjiang Eco-Meteorological and Satellite Remote Sensing Center, Urumqi 830011, China

Abstract

Exploring the evolution of vegetation cover and its drivers in the Ferghana Basin helps to understand the current ecological status of the Ferghana Basin and to analyze the vegetation changes and drivers, with a view to providing a scientific basis for regional ecological and environmental management and planning. Based on GIMMS NDVI3g and meteorological data, the spatial and temporal evolution characteristics of NDVI were analyzed from multiple perspectives with the help of linear trend and Mann–Kendall (MK) test methods using arcgis and the R language spatial analysis module, combined with partial correlation coefficients and residual analysis methods to analyze the impacts of climate change and human activities on the regional vegetation cover of the Ferghana Basin from 1982 to 2015. NDVI driving forces. The results showed the following: (1) The growing season of vegetation NDVI in the Ferghana Basin showed an increasing trend in the 34-year period, with an increase rate of 0.0044/10a, and the spatial distribution was significantly different, which was high in the central part of the country and low in the northern and southern parts of the country. (2) Temperature and precipitation simultaneously co-influenced the vegetation NDVI growth season, with most of the temperature and precipitation contributing in the spring, most of the temperature in the summer being negatively phased and the precipitation positively correlated, and most of the temperature and precipitation in the fall inhibiting vegetation NDVI growth. (3) The combined effect of climate change and human activities was the main reason for the overall rapid increase and great spatial variations in vegetation NDVI in China, and the spatial distribution of drivers, namely human activities and climate change, contributed 44.6% to vegetation NDVI in the growing season. The contribution of climate change and human activities to vegetation NDVI in the Ferghana Basin was 62.32% and 93.29%, respectively. The study suggests that more attention should be paid to the role of human activities and climate change in vegetation restoration to inform ecosystem management and green development.

Funder

Natural Science Foundation of Xinjiang Province of China

Natural Science Foundation of China

Key 355 Laboratory of Xinjiang Province of China

China Desert Weather Scientific 356 Research Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3