Improving Aboveground Biomass Estimation in Lowland Tropical Forests across Aspect and Age Stratification: A Case Study in Xishuangbanna

Author:

Wu Yong12,Ou Guanglong12ORCID,Lu Tengfei3,Huang Tianbao12,Zhang Xiaoli12,Liu Zihao12,Yu Zhibo12,Guo Binbing12,Wang Er12,Feng Zihang12,Luo Hongbin12ORCID,Lu Chi12ORCID,Wang Leiguang14,Xu Weiheng14ORCID

Affiliation:

1. Key Laboratory of State Administration of Forestry and Grassland on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650233, China

2. Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650233, China

3. Yunnan Institute of Forest Inventory and Planning, Kunming 650051, China

4. Institute of Big Data and Artificial Intelligence, Southwest Forestry University, Kunming 650224, China

Abstract

Improving the precision of aboveground biomass (AGB) estimation in lowland tropical forests is crucial to enhancing our understanding of carbon dynamics and formulating climate change mitigation strategies. This study proposes an AGB estimation method for lowland tropical forests in Xishuangbanna, which include various vegetation types, such as Pinus kesiya var. langbianensis, oak, Hevea brasiliensis, and other broadleaf trees. In this study, 2016 forest management inventory data are integrated with remote sensing variables from Landsat 8 OLI (L8) and Sentinel 2A (S2) imagery to estimate forest AGB. The forest age and aspect were utilized as stratified variables to construct the random forest (RF) models, which may improve the AGB estimation accuracy. The key findings are as follows: (1) through variable screening, elevation was identified as the main factor correlated with the AGB, with texture measures derived from a pixel window size of 7 × 7 perform best for AGB sensitivity, followed by 5 × 5, with 3 × 3 being the least effective. (2) A comparative analysis of imagery groups for the AGB estimation revealed that combining L8 and S2 imagery achieved superior performance over S2 imagery alone, which, in turn, surpassed the accuracy of L8 imagery. (3) Stratified models, which integrated aspect and age variables, consistently outperformed the unstratified models, offering a more refined fit for lowland tropical forest AGB estimation. (4) Among the analyzed forest types, the AGB of P. kesiya var. langbianensis forests was estimated with the highest accuracy, followed by H. brasiliensis, oak, and other broadleaf forests within the RF models. These findings highlight the importance of selecting appropriate variables and sensor combinations in addition to the potential of stratified modeling approaches to improve the precision of forest biomass estimation. Overall, incorporating stratification theory and multi-source data can enhance the AGB estimation accuracy in lowland tropical forests, thus offering crucial insights for refining forest management strategies.

Funder

Scientific Research Fund Project of Yunnan Provincial Education Department

Education Talent of Xingdian Talent Support Program of Yunnan Province, China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3