Application of Image Sensors to Detect and Locate Electrical Discharges: A Review

Author:

Riba Jordi-RogerORCID

Abstract

Today, there are many attempts to introduce the Internet of Things (IoT) in high-voltage systems, where partial discharges are a focus of concern since they degrade the insulation. The idea is to detect such discharges at a very early stage so that corrective actions can be taken before major damage is produced. Electronic image sensors are traditionally based on charge-coupled devices (CCDs) and, next, on complementary metal oxide semiconductor (CMOS) devices. This paper performs a review and analysis of state-of-the-art image sensors for detecting, locating, and quantifying partial discharges in insulation systems and, in particular, corona discharges since it is an area with an important potential for expansion due to the important consequences of discharges and the complexity of their detection. The paper also discusses the recent progress, as well as the research needs and the challenges to be faced, in applying image sensors in this area. Although many of the cited research works focused on high-voltage applications, partial discharges can also occur in medium- and low-voltage applications. Thus, the potential applications that could potentially benefit from the introduction of image sensors to detect electrical discharges include power substations, buried power cables, overhead power lines, and automotive applications, among others.

Funder

Government of Catalonia

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference136 articles.

1. Partial Discharge Online Detection for Long-Term Operational Sustainability of On-Site Low Voltage Distribution Network Using CNN Transfer Learning

2. IEC 60270:2000 High-Voltage Test Techniques—Partial Discharge Measurements,2000

3. Experience with optical partial discharge detection;Muhr;Mater. Sci. Pol.,2009

4. IEEE Guide for Partial Discharge Testing of Shielded Power Cable Systems in a Field Environment,2007

5. Partial Discharges Classification Methods in XLPE Cable: A Review

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3