Abstract
Partial discharge (PD) detection studies aiming at the fault diagnosis for facilities and power cables in transmission networks have been conducted over the years. Recently, the deep learning models for PD detection have been used to diagnose the PD fault of facilities and cables. Most PD studies have been conducted in the field, such as gas-insulated switchgear (GIS) and power cables for high voltage transmission networks. There are few studies of PD fault detection for on-site low-voltage distribution networks. Additionally, there are few studies of PD detection algorithms for improving the accuracy of the deep learning models using small real PD data only. In this study, a PD online detection system and a model for long-term operational sustainability of on-site low voltage distribution networks are proposed using convolutional neural network (CNN) transfer-learning. The proposed PD online system makes it possible to acquire as many real PD data as possible through continuous monitoring of PD occurrence. The PD detection accuracy results showed that the proposed CNN transfer-learning models are more effective models for obtaining improved accuracy (97.4%) than benchmark models, such as CNN and support vector machine (SVM) using only small real PD data acquired from PD online detection system.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献