Contextual Patch-NetVLAD: Context-Aware Patch Feature Descriptor and Patch Matching Mechanism for Visual Place Recognition

Author:

Sun Wenyuan1,Chen Wentang234ORCID,Huang Runxiang1,Tian Jing1ORCID

Affiliation:

1. Institute of Systems Science, National University of Singapore, Singapore 119615, Singapore

2. State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China

3. Engineering Research Center for Design Engineering and Digital Twin of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China

4. Robotics Institute, Zhejiang University, Hangzhou 310027, China

Abstract

The goal of visual place recognition (VPR) is to determine the location of a query image by identifying its place in a collection of image databases. Visual sensor technologies are crucial for visual place recognition as they allow for precise identification and location of query images within a database. Global descriptor-based VPR methods face the challenge of accurately capturing the local specific regions within a scene; consequently, it leads to an increasing probability of confusion during localization in such scenarios. To tackle feature extraction and feature matching challenges in VPR, we propose a modified patch-NetVLAD strategy that includes two new modules: a context-aware patch descriptor and a context-aware patch matching mechanism. Firstly, we propose a context-driven patch feature descriptor to overcome the limitations of global and local descriptors in visual place recognition. This descriptor aggregates features from each patch’s surrounding neighborhood. Secondly, we introduce a context-driven feature matching mechanism that utilizes cluster and saliency context-driven weighting rules to assign higher weights to patches that are less similar to densely populated or locally similar regions for improved localization performance. We further incorporate both of these modules into the patch-NetVLAD framework, resulting in a new approach called contextual patch-NetVLAD. Experimental results are provided to show that our proposed approach outperforms other state-of-the-art methods to achieve a Recall@10 score of 99.82 on Pittsburgh30k, 99.82 on FMDataset, and 97.68 on our benchmark dataset.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3