BinVPR: Binary Neural Networks towards Real-Valued for Visual Place Recognition

Author:

Wang Junshuai12,Han Junyu12,Dong Ruifang12ORCID,Kan Jiangming12

Affiliation:

1. School of Technology, Beijing Forestry University, Beijing 100083, China

2. Key Laboratory of State Forestry Administration on Forestry Equipment and Automation, Beijing 100083, China

Abstract

Visual Place Recognition (VPR) aims to determine whether a robot or visual navigation system locates in a previously visited place using visual information. It is an essential technology and challenging problem in computer vision and robotic communities. Recently, numerous works have demonstrated that the performance of Convolutional Neural Network (CNN)-based VPR is superior to that of traditional methods. However, with a huge number of parameters, large memory storage is necessary for these CNN models. It is a great challenge for mobile robot platforms equipped with limited resources. Fortunately, Binary Neural Networks (BNNs) can reduce memory consumption by converting weights and activation values from 32-bit into 1-bit. But current BNNs always suffer from gradients vanishing and a marked drop in accuracy. Therefore, this work proposed a BinVPR model to handle this issue. The solution is twofold. Firstly, a feature restoration strategy was explored to add features into the latter convolutional layers to further solve the gradient-vanishing problem during the training process. Moreover, we identified two principles to address gradient vanishing: restoring basic features and restoring basic features from higher to lower layers. Secondly, considering the marked drop in accuracy results from gradient mismatch during backpropagation, this work optimized the combination of binarized activation and binarized weight functions in the Larq framework, and the best combination was obtained. The performance of BinVPR was validated on public datasets. The experimental results show that it outperforms state-of-the-art BNN-based approaches and full-precision networks of AlexNet and ResNet in terms of both recognition accuracy and model size. It is worth mentioning that BinVPR achieves the same accuracy with only 1% and 4.6% model sizes of AlexNet and ResNet.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3