Optimal Operation of Distribution Networks Considering Renewable Energy Sources Integration and Demand Side Response

Author:

Hachemi Ahmed T.1ORCID,Sadaoui Fares1ORCID,Saim Abdelhakim2ORCID,Ebeed Mohamed3ORCID,Abbou Hossam E. A.4ORCID,Arif Salem4

Affiliation:

1. Electrical Engineering Laboratory, University of Kasdi Merbah, Ouargla 30000, Algeria

2. IREENA Laboratory, Nantes University, 44035 Nantes, France

3. Department of Electrical Engineering, Faculty of Engineering, Sohag University, Sohag 82524, Egypt

4. LACoSERE Laboratory, University of Amar Telidji, Laghouat 03000, Algeria

Abstract

This paper demonstrates the effectiveness of Demand Side Response (DSR) with renewable integration by solving the stochastic optimal operation problem (OOP) in the IEEE 118-bus distribution system over 24 h. An Improved Walrus Optimization Algorithm (I-WaOA) is proposed to minimize costs, reduce voltage deviations, and enhance stability under uncertain loads, generation, and pricing. The proposed I-WaOA utilizes three strategies: the fitness-distance balance method, quasi-opposite-based learning, and Cauchy mutation. The I-WaOA optimally locates and sizes photovoltaic (PV) ratings and wind turbine (WT) capacities and determines the optimal power factor of WT with DSR. Using Monte Carlo simulations (MCS) and probability density functions (PDF), the uncertainties in renewable energy generation, load demand, and energy costs are represented. The results show that the proposed I-WaOA approach can significantly reduce costs, improve voltage stability, and mitigate voltage deviations. The total annual costs are reduced by 91%, from 3.8377 × 107 USD to 3.4737 × 106 USD. Voltage deviations are decreased by 63%, from 98.6633 per unit (p.u.) to 36.0990 p.u., and the system stability index is increased by 11%, from 2.444 × 103 p.u. to 2.7245 × 103 p.u., when contrasted with traditional methods.

Funder

National Research Agency (ANR), LEAP RE “MiDiNA—Microgrids Development in North Africa” project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3