Modified reptile search algorithm for optimal integration of renewable energy sources in distribution networks

Author:

Hachemi Ahmed T.1ORCID,Sadaoui Fares1,Arif Salem2,Saim Abdelhakim3,Ebeed Mohamed4,Kamel Salah5ORCID,Jurado Francisco6ORCID,Mohamed Emad A.7

Affiliation:

1. Electrical Engineering Laboratory University of Kasdi Merbah Ouargla Ouargla Algeria

2. LACoSERE Laboratory University of Amar Telidji Laghouat Algeria

3. IREENA Laboratory Nantes University Saint Nazaire France

4. Department of Electrical Engineering, Faculty of Engineering Sohag University Sohag Egypt

5. Electrical Engineering Department, Faculty of Engineering Aswan University Aswan Egypt

6. Department of Electrical Engineering University of Jaén Jaén Spain

7. Department of Electrical Engineering Prince Sattam Bin Abdulaziz University Al Kharj Saudi Arabia

Abstract

AbstractThis paper introduces a Modified Reptile Search Algorithm (MRSA) designed to optimize the operation of distribution networks (DNs) considering the growing integration of renewable energy sources (RESs). The integration of RESs‐based Distributed Generation (DG) systems, such as wind turbines (WTs) and photovoltaics (PVs), presents a complex challenge due to its significant impact on DN operations and planning, particularly considering uncertainties related to solar irradiance, temperature, wind speed, consumption, and energy prices. The primary objective is cost reduction, encompassing electricity acquisition, PV and WTs unit costs, and annual energy losses. The proposed MRSA incorporates two strategies: the fitness‐distance balance method and Levy flight motion, enhancing its searching capabilities beyond standard Reptile Search Algorithm and mitigating local optima issues. The uncertainties in load demand, energy prices, and renewable energy generation are represented through probability density functions and simulated using Monte Carlo methods. Evaluation involves typical bentchmark functions and a real 112‐bus Algerian DN, comparing MRSA's efficacy with other optimization techniques. Results indicate that the proposed DN optimization program with WTs and PVs integration reduces annual costs by 21.43%, from 6.2715E + 06 to 4.9270E + 06 USD, reduce voltage deviations by 21.67%, from 77.1022 to 60.4007 USD, and enhance system stability by 2.59%, from 2.3699E + 03 to 2.4314E + 03 USD, compared with the base case.

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3