Determination of the Critical Value of Material Damage in a Cross Wedge Rolling Test

Author:

Pater ZbigniewORCID,Gontarz AndrzejORCID,Tomczak JanuszORCID,Bulzak TomaszORCID,Wójcik ŁukaszORCID

Abstract

This study investigates the problem of material fracture in cross wedge rolling (CWR). It was found that this problem could be analysed by means of well-known phenomenological criteria of fracture that are implemented in commercial FEM (Finite Element Method) simulation programs for forming processes. The accuracy of predicting material fracture depends on the critical damage value that is determined by calibration tests in which the modelled and real stresses must be in good agreement. To improve this accuracy, a new calibration test is proposed. The test is based on the CWR process. Owing to the shape of the tools and test piece used in CWR, the forming conditions in this process deteriorate with the distance from the centre of the test piece, which at a certain moment leads to fracture initiation. Knowing the location of axial crack initiation in the specimen, it is possible to determine the critical value of material damage via numerical simulation. The new calibration test is used to determine the critical damage of 42CrMo4 steel subjected to forming in the temperature range of 900–1100 °C. In addition, 12 criteria of ductile fracture are employed in the study. The results show that the critical damage significantly increases with the temperature.

Funder

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

MDPI AG

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modified hybrid damage criterion for the cross wedge rolling process;Journal of Manufacturing Processes;2023-12

2. New Methodology for Predicting the Cracking Phenomenon in the Radial Extrusion Process of Hollow Parts with a Flange;Advances in Science and Technology Research Journal;2023-06-01

3. Criteria for opening an axial cavity in cross-wedge rolling;Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series;2023-01-02

4. Improving the Performance Properties of Eutectoid Steel Products by a Complex Effect;Materials;2022-11-30

5. Recent developments and future trends in cross wedge rolling;Reference Module in Materials Science and Materials Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3