Microstructural effects on central crack formation in hot cross-wedge-rolled high-strength steel parts

Author:

Zhou XianyanORCID,Shao Zhutao,Tian Famin,Hopper Christopher,Jiang Jun

Abstract

AbstractCentral cracking in cross-wedge-rolled workpieces results in high wastage and economic loss. Recent cross-wedge rolling tests on two batches of steel showed that one batch formed central cracks, while the other was crack-free. The batches were both nominally of the same chemical composition and thermomechanical treatment history. In addition, both batches had passed all the standard quality assessments set for conventional forging processes. It was suspected that the different cracking behaviours were due to differences in microstructure between the two as-received steel billets, and the material in cross-wedge rolling (CWR) was more sensitive to the initial microstructure compared with other forging processes due to its specific loading condition including ostensibly compression and large plastic strain. Nevertheless, no previous study of this important problem could be identified. The aim of this study is, therefore, to identify the key microstructural features determining the central crack formation behaviour in CWR. The hot workability of the as-received billets was studied under uniaxial tensile conditions using a Gleeble 3800 test machine. Scanning electron microscope with energy-dispersive X-ray spectroscopy and electron backscatter diffraction was applied to characterise, quantitatively analyse, and compare the chemical composition, phase, grain, and inclusions in these two billets, both at room temperature and also at the CWR temperature (1080 °C). Non-metallic inclusions (oxides, sulphides, and silicates) in the billets were determined to be the main cause of the reported central cracking problem. The ductility of the steels at both room and elevated temperatures deteriorated markedly in the presence of the large volumes of inclusions. Grain boundary embrittlement occurred at the CWR temperature due to the aggregation of inclusions along the grain boundaries. It is suggested that a standard on specifying the inclusion quantity and size in CWR billets be established to produce crack-free products.

Funder

Imperial College London

China Sponsorship Council

Royal Society-Newton Mobility Grant

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3