Laboratory Study on the Stability of Large-Size Graded Crushed Stone under Cyclic Rotating Axial Compression

Author:

Tan Bo,Yang TaoORCID,Qin Heying,Liu Qi

Abstract

In this paper, the stability of large-size graded crushed stone used for road base or cushioning under repeated load is investigated. Using an in-house developed device, large-size crushed stone mix was compacted and molded by the vibration and rotary compaction method. Cyclic rotating axial compression was applied, and the shakedown theory was used to study the cumulative deformation of the large-size crushed stone specimens. The effects of gradation parameters on the cumulative strain and stability behavior were analyzed, and the critical stability and failure loads were determined according to the shakedown theory. The test results indicate that there are three obvious instability behavior stages of large-size graded crushed stone under cyclic rotating axial compression: elastic stability, plastic creep, and incremental plastic failure. Large-size graded crushed stone has a higher critical stability load stiffness than conventional-size graded crushed stone. The critical shakedown load of the specimen is mainly affected by the skeleton structure performance, and the critical failure load by the properties of the crushed stone material. Increasing the content and compactness of large-size crushed stone in the specimen can improve the stiffness and stability performance, and to achieve improvements, the content of large-size crushed stone should be controlled between 22% and 26%. The critical shakedown load increases with the increase in the California bearing ratio (CBR) value, while, on the other hand, the CBR value has little relationship with the critical failure load.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3