Autonomous Dam Surveillance Robot System Based on Multi-Sensor Fusion

Author:

Zhang Chao,Zhan Quanzhong,Wang Qi,Wu Haichao,He TingORCID,An Yi

Abstract

Dams are important engineering facilities in the water conservancy industry. They have many functions, such as flood control, electric power generation, irrigation, water supply, shipping, etc. Therefore, their long-term safety is crucial to operational stability. Because of the complexity of the dam environment, robots with various kinds of sensors are a good choice to replace humans to perform a surveillance job. In this paper, an autonomous system design is proposed for dam ground surveillance robots, which includes general solution, electromechanical layout, sensors scheme, and navigation method. A strong and agile skid-steered mobile robot body platform is designed and created, which can be controlled accurately based on an MCU and an onboard IMU. A novel low-cost LiDAR is adopted for odometry estimation. To realize more robust localization results, two Kalman filter loops are used with the robot kinematic model to fuse wheel encoder, IMU, LiDAR odometry, and a low-cost GNSS receiver data. Besides, a recognition network based on YOLO v3 is deployed to realize real-time recognition of cracks and people during surveillance. As a system, by connecting the robot, the cloud server and the users with IOT technology, the proposed solution could be more robust and practical.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference31 articles.

1. A study of safety evaluation and early-warning method for dam global behavior;Su;Struct. Health Monit.,2012

2. Survey on Contemporary Remote Surveillance Systems for Public Safety

3. Toward Intelligent Security Robots: A Survey

4. Improvements to the rescue robot quince toward future indoor surveillance missions in the Fukushima Daiichi nuclear power plant;Yoshida,2014

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low-Cost Real-Time Localisation for Agricultural Robots in Unstructured Farm Environments;Machines;2024-09-02

2. Cybersecurity in Connected Autonomous Vehicles;Advances in Business Information Systems and Analytics;2023-12-15

3. The role of artificial intelligence and digital technologies in dam engineering: Narrative review and outlook;Engineering Applications of Artificial Intelligence;2023-11

4. Research on Underwater Surface Crack Detection Technology of Concrete Dam Based on Image Processing;2023 2nd International Conference on Data Analytics, Computing and Artificial Intelligence (ICDACAI);2023-10-17

5. Analysis of Tread ICRs for Wheeled Skid-Steer Vehicles on Inclined Terrain;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3