Low-Cost Real-Time Localisation for Agricultural Robots in Unstructured Farm Environments

Author:

Liu Chongxiao1,Nguyen Bao Kha1

Affiliation:

1. School of Engineering and Informatics, University of Sussex, Brighton BN1 9QT, UK

Abstract

Agricultural robots have demonstrated significant potential in enhancing farm operational efficiency and reducing manual labour. However, unstructured and complex farm environments present challenges to the precise localisation and navigation of robots in real time. Furthermore, the high costs of navigation systems in agricultural robots hinder their widespread adoption in cost-sensitive agricultural sectors. This study compared two localisation methods that use the Error State Kalman Filter (ESKF) to integrate data from wheel odometry, a low-cost inertial measurement unit (IMU), a low-cost real-time kinematic global navigation satellite system (RTK-GNSS) and the LiDAR-Inertial Odometry via Smoothing and Mapping (LIO-SAM) algorithm using a low-cost IMU and RoboSense 16-channel LiDAR sensor. These two methods were tested on unstructured farm environments for the first time in this study. Experiment results show that the ESKF sensor fusion method without a LiDAR sensor could save 36% of the cost compared to the method that used the LIO-SAM algorithm while maintaining high accuracy for farming applications.

Funder

University of Sussex

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3