Affiliation:
1. College of Mathematics Informatics, South China Agricultural University, Guangzhou 510642, China
2. Key Laboratory of Smart Agricultural Technology in Tropical South China, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
Abstract
In the field of livestock management, noncontact pig weight estimation has advanced considerably with the integration of computer vision and sensor technologies. However, real-world agricultural settings present substantial challenges for these estimation techniques, including the impacts of variable lighting and the complexities of measuring pigs in constant motion. To address these issues, we have developed an innovative algorithm, the moving pig weight estimate algorithm based on deep vision (MPWEADV). This algorithm effectively utilizes RGB and depth images to accurately estimate the weight of pigs on the move. The MPWEADV employs the advanced ConvNeXtV2 network for robust feature extraction and integrates a cutting-edge feature fusion module. Supported by a confidence map estimator, this module effectively merges information from both RGB and depth modalities, enhancing the algorithm’s accuracy in determining pig weight. To demonstrate its efficacy, the MPWEADV achieved a root-mean-square error (RMSE) of 4.082 kg and a mean absolute percentage error (MAPE) of 2.383% in our test set. Comparative analyses with models replicating the latest research show the potential of the MPWEADV in unconstrained pig weight estimation practices. Our approach enables real-time assessment of pig conditions, offering valuable data support for grading and adjusting breeding plans, and holds broad prospects for application.
Funder
National Key R&D Program of China
key technology research and integrated application of smart agriculture
Subject
General Veterinary,Animal Science and Zoology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献