Non-Invasive Fish Biometrics for Enhancing Precision and Understanding of Aquaculture Farming through Statistical Morphology Analysis and Machine Learning

Author:

Ramírez-Coronel Fernando Joaquín1ORCID,Rodríguez-Elías Oscar Mario1ORCID,Esquer-Miranda Edgard2,Pérez-Patricio Madaín3ORCID,Pérez-Báez Anna Judith4ORCID,Hinojosa-Palafox Eduardo Antonio1ORCID

Affiliation:

1. Division of Graduate Studies and Research, Tecnológico Nacional de México/ I.T. de Hermosillo, Av. Tecnológico 115, Hermosillo 83170, Sonora, Mexico

2. Licenciatura en Agro Negocios, Campus Hermosillo, Universidad Estatal de Sonora, Av. Ley Federal del Trabajo S/N, Hermosillo 83100, Sonora, Mexico

3. Division of Graduate Studies and Research, Tecnológico Nacional de México/ I.T. de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, Tuxtla Gutiérrez 29050, Chiapas, Mexico

4. Instituto de Acuacultura del Estado de Sonora, Conmonfort SN, Proyecto Rio Sonora Hermosillo XXI, Hermosillo 83280, Sonora, Mexico

Abstract

Aquaculture requires precise non-invasive methods for biomass estimation. This research validates a novel computer vision methodology that uses a signature function-based feature extraction algorithm combining statistical morphological analysis of the size and shape of fish and machine learning to improve the accuracy of biomass estimation in fishponds and is specifically applied to tilapia (Oreochromis niloticus). These features that are automatically extracted from images are put to the test against previously manually extracted features by comparing the results when applied to three common machine learning methods under two different lighting conditions. The dataset for this analysis encompasses 129 tilapia samples. The results give promising outcomes since the multilayer perceptron model shows robust performance, consistently demonstrating superior accuracy across different features and lighting conditions. The interpretable nature of the model, rooted in the statistical features of the signature function, could provide insights into the morphological and allometric changes at different developmental stages. A comparative analysis against existing literature underscores the competitiveness of the proposed methodology, pointing to advancements in precision, interpretability, and species versatility. This research contributes significantly to the field, accelerating the quest for non-invasive fish biometrics that can be generalized across various aquaculture species in different stages of development. In combination with detection, tracking, and posture recognition, deep learning methodologies such as the one provided in the latest studies could generate a powerful method for real-time fish morphology development, biomass estimation, and welfare monitoring, which are crucial for the effective management of fish farms.

Funder

CONAHCYT

Tecnológico Nacional de México within the program for scientific research, technological development, and innovation projects

Publisher

MDPI AG

Reference38 articles.

1. FAO (2022). In Brief to The State of World Fisheries and Aquaculture 2022, FAO.

2. A Technical Review on Feeders in Aquaculture;Tanveer;Int. J. Fish. Aquat. Stud.,2018

3. Intelligent Fish Farm—The Future of Aquaculture;Wang;Aquac. Int.,2021

4. Automatic Measurement of Fish Weight and Size by Processing Underwater Hatchery Images;Eng. Lett.,2018

5. Stress and the Welfare of Cultured Fish;Conte;Appl. Anim. Behav. Sci.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3