Effects of Dietary Protein Levels on Growth, Digestive Enzyme Activity, Antioxidant Capacity, and Gene Expression Related to Muscle Growth and Protein Synthesis of Juvenile Greasyback Shrimp (Metapenaeus ensis)

Author:

Xiao Fei12,Wang Jiawei1,Liu Huaming1,Zhuang Minjia1,Wen Xiaobo12,Zhao Huihong12,Wu Kun12ORCID

Affiliation:

1. College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China

2. Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou 510642, China

Abstract

An 8-week feeding trial was conducted to assess the effects on growth, antioxidant capacity, digestive enzyme activity, and gene expression related to muscle growth and protein synthesis of juvenile greasyback shrimp (Metapenaeus ensis) using five experimental diets containing 29.37%, 34.30%, 39.11%, 44.05%, and 49.32% of protein. The results demonstrated that juvenile greasyback shrimp consuming 39.11%, 44.05%, and 49.32% dietary protein had a significantly higher final body weight (FBW), weight gain (WG), feed conversion ratio (FCR), and specific growth rate (SGR) than other groups (p < 0.05). The protein efficiency ratio (PER) showed a significantly quadratic pattern with increasing dietary protein levels (p < 0.05). The highest trypsin and pepsin activities were observed in the group with a protein level of 44.05% (p < 0.05). Relatively higher superoxide dismutase (SOD) activity was found in groups with protein levels of 39.11% (p < 0.05). Alkaline phosphatase (AKP) and catalase (CAT) activity showed a significantly linear increasing pattern with increasing protein intake up to 44.05%, and then decreased gradually (p < 0.05). Compared to the dietary 29.37% protein level, the expression levels of myogenic regulatory factors (mef2α, mlc, and myf5) and mTOR pathway (mtor, s6k, akt, and pi3k)-related genes were significantly up-regulated in muscle with 39.11%, 44.05%, and 49.32% dietary protein levels (p < 0.05). The AAR pathway (gcn2, eif2α, and atf4)-related gene expression levels were significantly lower in muscles with 39.11%, 44.05%, and 49.32% protein levels than in other groups (p < 0.05). Based on the broken-line regression analysis of SGR, the estimated appropriate dietary protein requirement for juvenile greasyback shrimp is 38.59%.

Funder

key research and development program of Guangzhou Nansha District Agriculture and rural bureau, Guangzhou Basic and Applied Basic Research Foundation

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference54 articles.

1. FAO (2022). Contributing to Food Security and Nutrition for All, Food and Agriculture Organization of the United Nations (FAO).

2. Chinese Fishery Statistical Yearbook (2021). Fisheries Agency of China Agriculture Ministry, China Agriculture Press.

3. Comparison of biochemical composition and nutritional value of antarctic krill (Euphausia superba) with several species of shrimps;Liu;Adv. Mater. Res.,2011

4. Interactions between dietary protein levels, growth performance, feed utilization, gene expression and metabolic products in juvenile grass carp (Ctenopharyngodon idella);Jin;Aquaculture,2015

5. Litopenaeus vannamei juveniles energetic balance and immunological response to dietary proteins;Pascual;Aquaculture,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3