Abstract
Icing forecasting for transmission lines is of great significance for anti-icing strategies in power grids, but existing prediction models have some disadvantages such as application limitations, weak generalization, and lack of global prediction ability. To overcome these shortcomings, this paper suggests a new conception about a segmental icing prediction model for transmission lines in which the classification of icing process plays a crucial role. In order to obtain the classification, a hierarchical K-means clustering method is utilized and 11 characteristic parameters are proposed. Based on this method, 97 icing processes derived from the Icing Monitoring System in China Southern Power Grid are clustered into six categories according to their curve shape and the abstracted icing evolution curves are drawn based on the clustering centroid. Results show that the processes of ice events are probably different and the icing process can be considered as a combination of several segments and nodes, which reinforce the suggested conception of the segmental icing prediction model. Based on monitoring data and clustering, the obtained types of icing evolution are more comprehensive and specific, and the work lays the foundation for the model construction and contributes to other fields.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献