Experimental study on ice monitoring method for 10 kV transmission line with tangent tower in alpine landform

Author:

Yang Lin1ORCID,Chen Zhiqiang1ORCID,Hao Yanpeng1,Lin Xinhao2,Yu Lei2,Li Yue3,Yuan Zhiyong2,Li Licheng1

Affiliation:

1. School of Electric Power South China University of Technology Guangzhou China

2. Electrical Power Research Institute China Southern Power Grid Guangzhou China

3. Electric Power Research Institute of Guizhou Power Grid Co. Ltd. Guizhou China

Abstract

AbstractIce monitoring methods were applied for 110 kV and above transmission lines with tangent towers. However, the change in the vertical span is not considered, and a significant difference lies in the tower‐conductor structure of 10 kV transmission lines. For this reason, a proposal is made about the ice monitoring method for the 10 kV transmission line with tangent tower in alpine landform, which includes the ice monitoring system based on pressure measurement and corresponding equivalent ice thickness calculating methods. Different methods calculate the vertical span under different height difference coefficients. A finite element simulation model and a simulated ice load experiment system are established based on real conductors and insulators. Experiments and simulations under four simulated terrains are conducted within 2.5–20 mm ice thickness range. The comparison is made between this method and the method without considering the change in vertical span. The results show that the two methods are consistent and the relative errors are lower than ±4% in simulation and ±10% in experiment when the height difference coefficient is 0. When it is not 0, the relative errors of this method fall between +0.38% and +6.78% in simulation and −6.40% to +6.60% in experiment, while the relative errors of the method without considering the change in vertical span ranges between −11.13% and −20.23% in simulation and −11.65% to −23.20% in experiment.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3