Abstract
Certain nonlinear influences are found in dual-tube Coriolis mass flowmeters (CMFs). According to experimentation, a nonlinearity dominated by frequency-doubling signals can be observed in the measuring signal. In general, such nonlinear effects are simplified as linear systems or neglected through processing. In this paper, a simplified model has been constructed for dual-beam CMFs based on the theory of nonlinear dynamics, with the spring–damper system as the medium for the dual-beam coupled vibrations. Next, the dynamics differential equation of the coupled vibrations is set up on the basis of the Lagrangian equation. Furthermore, numerical solutions are obtained using the Runge–Kutta fourth-order method. The study then fits discrete points of the numerical solutions, which are converted into the frequency domain to observe the existence of frequency-doubling signal components. Our findings show that frequency-doubling components exist in the spectrogram, proving that these nonlinear influences are a result of the motions of coupled vibrations. In this study, non-linear frequency-doubling signal sources are qualitatively analyzed to formulate a theoretical basis for CMFs design.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献