Nonlinear Suppression of a Dual-Tube Coriolis Mass Flowmeter Based on Synchronization Effect

Author:

Li Zhong-Xiang,Hu Chun,Han Ming-Zhe,Fan Shang-Chun,Zheng De-ZhiORCID

Abstract

Nonlinear interference components exist in the output signals of dual-tube Coriolis mass flowmeters (CMFs) which affect the sensitivity and accuracy of the devices. This nonlinearity still appears under zero flow, which is manifested when the output signal contains a frequency doubling signal. This study (1) investigated an additional-mass method to suppress the nonlinear frequency doubling phenomenon, (2) established a coupling system vibration model with additional mass, built a dynamic differential equation for the vibration of the double-beam coupling system from the Lagrange equation, (3) obtained amplitude frequency information using a fourth-order Runge–Kutta method, (4) determined the suppression effect of the additional mass on the nonlinear frequency doubling phenomenon, and (5) experimentally verified the CMF. The results showed that the base coupled the vibrations of two beams, and the symmetric additional mass suppressed the nonlinear frequency doubling phenomenon, thus suppressing low or high frequencies. Also, the effect of pipeline defects simulated under asymmetric additional mass was obtained through numerical analysis and experimental data. Flowmeters with a required measuring frequency range had the optimal suppression effect on nonlinear frequency doubling and provided theoretical guidance for the nondestructive testing of measuring tubes.

Funder

National Natural Science Foundation of China

The special fund for basic scientific research of central colleges and universities-Youth talent support program of Beihang University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3