Bright Single-Photon Emitting Diodes Based on the Silicon-Vacancy Center in AlN/Diamond Heterostructures

Author:

Khramtsov Igor A.ORCID,Fedyanin Dmitry Yu.

Abstract

Practical implementation of many quantum information and sensing technologies relies on the ability to efficiently generate and manipulate single-photon photons under ambient conditions. Color centers in diamond, such as the silicon-vacancy (SiV) center, have recently emerged as extremely attractive single-photon emitters for room temperature applications. However, diamond is a material at the interface between insulators and semiconductors. Therefore, it is extremely difficult to excite color centers electrically and consequently develop bright and efficient electrically driven single-photon sources. Here, using a comprehensive theoretical approach, we propose and numerically demonstrate a concept of a single-photon emitting diode (SPED) based on a SiV center in a nanoscale AlN/diamond heterojunction device. We find that in spite of the high potential barrier for electrons in AlN at the AlN/diamond heterojunction, under forward bias, electrons can be efficiently injected from AlN into the i-type diamond region of the n-AlN/i-diamond/p-diamond heterostructure, which ensures bright single-photon electroluminescence (SPEL) of the SiV center located in the i-type diamond region. The maximum SPEL rate is more than five times higher than what can be achieved in SPEDs based on diamond p-i-n diodes. Despite the high density of defects at the AlN/diamond interface, the SPEL rate can reach about 4 Mcps, which coincides with the limit imposed by the quantum efficiency and the lifetime of the shelving state of the SiV center. These findings provide new insights into the development of bright room-temperature electrically driven single-photon sources for quantum information technologies and, we believe, stimulate further research in this area.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3