Reduction of Cold-Start Emissions for a Micro Combined Heat and Power Plant

Author:

Zobel TammoORCID,Schürch Christian,Boulouchos Konstantinos,Onder Christopher

Abstract

Decentralized power generation by combined heat and power plants becomes increasingly popular as a measure to advance the energy transition. In this context, a substantial advantage of small combined heat and power plants is based on the relatively low pollutant emissions. However, a large proportion of the pollutant emissions is produced during a cold-start. This fact is not reflected in governmental and institutional emission guidelines, as these strongly focus on the emission levels under steady-state conditions. This study analyzes the spark advance, the reference air/fuel ratio and an electrically heated catalyst in terms of their potential to reduce the cold-start emissions of a micro combined heat and power plant which uses a natural gas fueled reciprocating internal combustion engine as prime mover and a three-way catalytic converter as aftertreatment system. Based on these measures, control approaches were developed that account for the specific operating conditions of the class of small combined heat and power plants, e.g., full-load operation and flexible, demand-driven runtimes. The experimental data demonstrates that even solutions with marginal adaptation/integration effort can reduce cold-start emissions to a great extent.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference39 articles.

1. A Review of Renewable Energy Supply and Energy Efficiency Technologies;Abolhosseini,2014

2. Integrating high levels of variable renewable energy into electric power systems

3. Optimal operation of a CHP plant participating in the German electricity balancing and day-ahead spot market

4. System Modelling for Assessing the Potential of Decentralised biomass-CHP Plants to Stabilise the Swiss Electricity Network with Increased Fluctuating Renewable Generation;Vögelin,2016

5. Design analysis of gas engine combined heat and power plants (CHP) for building and industry heat demand under varying price structures

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3