Author:
Bao Yan,Chang Fangyu,Shi Jinkai,Yin Pengcheng,Zhang Weige,Gao David Wenzhong
Abstract
Within the context of sustainable development and a low-carbon economy, electric vehicles (EVs) are regarded as a promising alternative to engine vehicles. Since the increase of charging EVs brings new challenges to charging stations and distribution utility in terms of economy and reliability, EV charging should be coordinated to form a friendly and proper load. This paper proposes a novel approach for pricing of charging service fees in a public charging station based on prospect theory. This behavioral economics-based pricing mechanism will guide EV users to coordinated charging spontaneously. By introducing prospect theory, a model that reflects the EV owner’s response to price is established first, considering the price factor and the state-of-charge (SOC) of batteries. Meanwhile, the quantitative relationship between the utility value and the charging price or SOC is analyzed in detail. The EV owner’s response mechanism is used in modeling the charging load after pricing optimization. Accordingly, by using the particle swarm optimization algorithm, pricing optimization is performed to achieve multiple objectives such as minimizing the peak-to-valley ratio and electricity costs of the charging station. Through case studies, the determined time-of-use charging prices by pricing optimization is validated to be effective in coordinating EV users’ behavior, and benefiting both the station operator and power systems.
Funder
Ministry of Education of China
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献