Modeling Analysis of Thermal Lesion Characteristics of Unipolar/Bipolar Ablation Using Circumferential Multipolar Catheter

Author:

Gu Kaihao,Wang Yiheng,Yan Shengjie,Wu Xiaomei

Abstract

The circumferential multipolar catheter (CMC) facilitates pulmonary vein isolation (PVI) for the treatment of atrial fibrillation by catheter ablation. However, the ablation characteristics of CMC are not well understood. This study uses the finite element method to conduct a comprehensive analysis of the ablation characteristics of multielectrode unipolar/bipolar (MEU/MEB) modes of the CMC. A three-dimensional computational model of the CMC, including blood, myocardium, connective tissue, lung, and muscle, was constructed. The method was validated by comparing the results of an in vitro experiment with the simulation. Both ablation modes could create contiguous effective lesions, but the MEU mode created a deeper and broader lesion volume than the MEB mode. The MEB mode had an overall higher average temperature field and allowed faster formation of the effective contiguous lesion. The lesion shape tended to be symmetric and spread downward and superficially in the MEU mode and MEB mode, respectively. Results from the simulation for validation agreed with the in vitro experiment. Different ablation trends of the MEU and MEB modes provide different solutions for specific ablation requirements in clinical applications. The MEU mode suits transmural lesion in thick tissue around pulmonary veins (PVs). The MEB mode profits fast and durable creation of circumferential PVI. This study provides a detailed performance analysis of CMC, thereby contributing to the theoretical knowledge base of application of PVI with this emerging technology.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3