Author:
Zhu Dongpo,Zhang Peiyun,Tian Zhixiang,Chen Cheng,Hua Xijun,Xu Sheng,Xie Xuan
Abstract
A two-dimensional numerical model considering recoil pressure and Hertz-Knudsen ablation rate was established on the foundation of the laser remelting model to investigate the influence of laser processing parameters on crater feature and melted zone, and it was verified through experiments. The temperature and flow velocity distribution of the molten pool during the formation of the crater were analyzed. The results showed that the ablation velocity could be considered under a higher laser peak power density or higher pulse width due to the metal evaporation caused by heat accumulation. The depth and diameter of the crater were significantly affected by laser peak power density and laser pulse duration. Simultaneously, the height of the edge bulge decreased with the increase in pulse duration after 1.5 ms, and the growth rate of central depth was more rapid than that of edge bulge height with the increase of laser peak power density. In the texture with the same depth, a larger melted zone could be obtained with a longer laser duration than the higher peak power density.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献