Influence of Donut-Shaped Bump on the Hydrodynamic Lubrication of Textured Parallel Sliders

Author:

Fu Hao1,Ji Jinghu2,Fu Yonghong1,Hua Xijun1

Affiliation:

1. School of Mechanical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China

2. School of Mechanical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China e-mails: ;

Abstract

The influence of donut-shaped bump texture on the hydrodynamic lubrication performance for parallel surfaces is presented in this paper. A mathematical equation has been applied to express the shape of three-dimensional donut-shaped bump texture. Numerical simulation of the pressure distribution of lubricant between a textured slider and a smooth, moving slider has been performed to analyze the geometrical parameters' influence on the hydrodynamic performance for textured surfaces. The numerical results show that the convex of the donut-shaped bump provides a microstep slider, which can form a convergent wedge and build up hydrodynamic pressure. Optimum values of horizontal spacing and bump height are obtained to maximize the hydrodynamic pressure. It is also noted that the average pressure increases monotonically with the increase of bump radius, but decreases with the increase of vertical spacing and dimple depth, respectively.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3