Prioritizing Disease Diagnosis in Neonatal Cohorts through Multivariate Survival Analysis: A Nonparametric Bayesian Approach

Author:

Seo Jangwon1ORCID,Seok Junhee1,Kim Yoojoong2ORCID

Affiliation:

1. School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea

2. School of Computer Science and Information Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea

Abstract

Understanding the intricate relationships between diseases is critical for both prevention and recovery. However, there is a lack of suitable methodologies for exploring the precedence relationships within multiple censored time-to-event data, resulting in decreased analytical accuracy. This study introduces the Censored Event Precedence Analysis (CEPA), which is a nonparametric Bayesian approach suitable for understanding the precedence relationships in censored multivariate events. CEPA aims to analyze the precedence relationships between events to predict subsequent occurrences effectively. We applied CEPA to neonatal data from the National Health Insurance Service, identifying the precedence relationships among the seven most commonly diagnosed diseases categorized by the International Classification of Diseases. This analysis revealed a typical diagnostic sequence, starting with respiratory diseases, followed by skin, infectious, digestive, ear, eye, and injury-related diseases. Furthermore, simulation studies were conducted to demonstrate CEPA suitability for censored multivariate datasets compared to traditional models. The performance accuracy reached 76% for uniform distribution and 65% for exponential distribution, showing superior performance in all four tested environments. Therefore, the statistical approach based on CEPA enhances our understanding of disease interrelationships beyond competitive methodologies. By identifying disease precedence with CEPA, we can preempt subsequent disease occurrences and propose a healthcare system based on these relationships.

Funder

National Research Foundation of Korea

Basic Science Research Program through the National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3