Predicting diagnosis and survival of bone metastasis in breast cancer using machine learning

Author:

Zhong Xugang,Lin Yanze,Zhang Wei,Bi Qing

Abstract

AbstractThis study aimed at establishing more accurate predictive models based on novel machine learning algorithms, with the overarching goal of providing clinicians with effective decision-making assistance. We retrospectively analyzed the breast cancer patients recorded in the Surveillance, Epidemiology, and End Results (SEER) database from 2010 to 2016. Multivariable logistic regression analyses were used to identify risk factors for bone metastases in breast cancer, whereas Cox proportional hazards regression analyses were used to identify prognostic factors for breast cancer with bone metastasis (BCBM). Based on the identified risk and prognostic factors, we developed diagnostic and prognostic models that incorporate six machine learning classifiers. We then used the area under the receiver operating characteristic (ROC) curve (AUC), learning curve, precision curve, calibration plot, and decision curve analysis to evaluate performance of the machine learning models. Univariable and multivariable logistic regression analyses showed that bone metastases were significantly associated with age, race, sex, grade, T stage, N stage, surgery, radiotherapy, chemotherapy, tumor size, brain metastasis, liver metastasis, lung metastasis, breast subtype, and PR. Univariate and multivariate Cox regression analyses revealed that age, race, marital status, grade, surgery, radiotherapy, chemotherapy, brain metastasis, liver metastasis, lung metastasis, breast subtype, ER, and PR were closely associated with the prognosis of BCBM. Among the six machine learning models, the XGBoost algorithm predicted the most accurate results (Diagnostic model AUC = 0.98; Prognostic model AUC = 0.88). According to the Shapley additive explanations (SHAP), the most critical feature of the diagnostic model was surgery, followed by N stage. Interestingly, surgery was also the most critical feature of prognostic model, followed by liver metastasis. Based on the XGBoost algorithm, we could effectively predict the diagnosis and survival of bone metastasis in breast cancer and provide targeted references for the treatment of BCBM patients.

Funder

the Key Research and Development Program of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3