Augmented Reality Surgical Navigation System for External Ventricular Drain

Author:

Chiou Shin-YanORCID,Zhang Zhi-Yue,Liu Hao-LiORCID,Yan Jiun-Lin,Wei Kuo-ChenORCID,Chen Pin-Yuan

Abstract

Augmented reality surgery systems are playing an increasing role in the operating room, but applying such systems to neurosurgery presents particular challenges. In addition to using augmented reality technology to display the position of the surgical target position in 3D in real time, the application must also display the scalpel entry point and scalpel orientation, with accurate superposition on the patient. To improve the intuitiveness, efficiency, and accuracy of extra-ventricular drain surgery, this paper proposes an augmented reality surgical navigation system which accurately superimposes the surgical target position, scalpel entry point, and scalpel direction on a patient’s head and displays this data on a tablet. The accuracy of the optical measurement system (NDI Polaris Vicra) was first independently tested, and then complemented by the design of functions to help the surgeon quickly identify the surgical target position and determine the preferred entry point. A tablet PC was used to display the superimposed images of the surgical target, entry point, and scalpel on top of the patient, allowing for correct scalpel orientation. Digital imaging and communications in medicine (DICOM) results for the patient’s computed tomography were used to create a phantom and its associated AR model. This model was then imported into the application, which was then executed on the tablet. In the preoperative phase, the technician first spent 5–7 min to superimpose the virtual image of the head and the scalpel. The surgeon then took 2 min to identify the intended target position and entry point position on the tablet, which then dynamically displayed the superimposed image of the head, target position, entry point position, and scalpel (including the scalpel tip and scalpel orientation). Multiple experiments were successfully conducted on the phantom, along with six practical trials of clinical neurosurgical EVD. In the 2D-plane-superposition model, the optical measurement system (NDI Polaris Vicra) provided highly accurate visualization (2.01 ± 1.12 mm). In hospital-based clinical trials, the average technician preparation time was 6 min, while the surgeon required an average of 3.5 min to set the target and entry-point positions and accurately overlay the orientation with an NDI surgical stick. In the preparation phase, the average time required for the DICOM-formatted image processing and program import was 120 ± 30 min. The accuracy of the designed augmented reality optical surgical navigation system met clinical requirements, and can provide a visual and intuitive guide for neurosurgeons. The surgeon can use the tablet application to obtain real-time DICOM-formatted images of the patient, change the position of the surgical entry point, and instantly obtain an updated surgical path and surgical angle. The proposed design can be used as the basis for various augmented reality brain surgery navigation systems in the future.

Funder

Ministry of Science and Technology

Chang Gung Memorial Hospital

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Reference35 articles.

1. Evaluation of Light Fluence Distribution Using an IR Navigation System for HPPH‐mediated Pleural Photodynamic Therapy (pPDT)

2. Medical Device Guidance;Razzaque;US Patent,2019

3. Surgical Navigation Systems Including Reference and Localization Frames;Bucholz;US Patent,2001

4. Navigation in surgery

5. Image-Guided Surgery with Surface Reconstruction and Augmented Reality Visualization;Casas;US Patent,2018

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3