Examining the Public Messaging on ‘Loneliness’ over Social Media: An Unsupervised Machine Learning Analysis of Twitter Posts over the Past Decade

Author:

Ng Qin Xiang12ORCID,Lee Dawn Yi Xin3ORCID,Yau Chun En4ORCID,Lim Yu Liang2,Ng Clara Xinyi4ORCID,Liew Tau Ming567ORCID

Affiliation:

1. Health Services Research Unit, Singapore General Hospital, Singapore 169608, Singapore

2. Ministry of Health Holdings Pte Ltd., Singapore 099253, Singapore

3. School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow G12 8QQ, UK

4. NUS Yong Loo Lin School of Medicine, Singapore 117597, Singapore

5. Department of Psychiatry, Singapore General Hospital, Singapore 169608, Singapore

6. SingHealth Duke-NUS Medicine Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore

7. Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore

Abstract

Loneliness is an issue of public health significance. Longitudinal studies indicate that feelings of loneliness are prevalent and were exacerbated by the Coronavirus Disease 2019 (COVID-19) pandemic. With the advent of new media, more people are turning to social media platforms such as Twitter and Reddit as well as online forums, e.g., loneliness forums, to seek advice and solace regarding their health and well-being. The present study therefore aimed to investigate the public messaging on loneliness via an unsupervised machine learning analysis of posts made by organisations on Twitter. We specifically examined tweets put out by organisations (companies, agencies or common interest groups) as the public may view them as more credible information as opposed to individual opinions. A total of 68,345 unique tweets in English were posted by organisations on Twitter from 1 January 2012 to 1 September 2022. These tweets were extracted and analysed using unsupervised machine learning approaches. BERTopic, a topic modelling technique that leverages state-of-the-art natural language processing, was applied to generate interpretable topics around the public messaging of loneliness and highlight the key words in the topic descriptions. The topics and topic labels were then reviewed independently by all study investigators for thematic analysis. Four key themes were uncovered, namely, the experience of loneliness, people who experience loneliness, what exacerbates loneliness and what could alleviate loneliness. Notably, a significant proportion of the tweets centred on the impact of the COVID-19 pandemic on loneliness. While current online interactions are largely descriptive of the complex and multifaceted problem of loneliness, more targeted prosocial messaging appears to be lacking to combat the causes of loneliness brought up in public messaging.

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3