Machine Learning Model Based on Lipidomic Profile Information to Predict Sudden Infant Death Syndrome

Author:

Villagrana-Bañuelos Karen E.ORCID,Galván-Tejada Carlos E.ORCID,Galván-Tejada Jorge I.ORCID,Gamboa-Rosales HamurabiORCID,Celaya-Padilla José M.ORCID,Soto-Murillo Manuel A.ORCID,Solís-Robles RobertoORCID

Abstract

Sudden infant death syndrome (SIDS) represents the leading cause of death in under one year of age in developing countries. Even in our century, its etiology is not clear, and there is no biomarker that is discriminative enough to predict the risk of suffering from it. Therefore, in this work, taking a public dataset on the lipidomic profile of babies who died from this syndrome compared to a control group, a univariate analysis was performed using the Mann–Whitney U test, with the aim of identifying the characteristics that enable discriminating between both groups. Those characteristics with a p-value less than or equal to 0.05 were taken; once these characteristics were obtained, classification models were implemented (random forests (RF), logistic regression (LR), support vector machine (SVM) and naive Bayes (NB)). We used seventy percent of the data for model training, subjecting it to a cross-validation (k = 5) and later submitting to validation in a blind test with 30% of the remaining data, which allows simulating the scenario in real life—that is, with an unknown population for the model. The model with the best performance was RF, since in the blind test, it obtained an AUC of 0.9, specificity of 1, and sensitivity of 0.8. The proposed model provides the basis for the construction of a SIDS risk prediction computer tool, which will contribute to prevention, and proposes lines of research to deal with this pathology.

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3