Dealing With Missing, Imbalanced, and Sparse Features During the Development of a Prediction Model for Sudden Death Using Emergency Medicine Data: Machine Learning Approach

Author:

Chen XiaojieORCID,Chen HanORCID,Nan ShanORCID,Kong XiangtianORCID,Duan HuilongORCID,Zhu HaiyanORCID

Abstract

Background In emergency departments (EDs), early diagnosis and timely rescue, which are supported by prediction modes using ED data, can increase patients’ chances of survival. Unfortunately, ED data usually contain missing, imbalanced, and sparse features, which makes it challenging to build early identification models for diseases. Objective This study aims to propose a systematic approach to deal with the problems of missing, imbalanced, and sparse features for developing sudden-death prediction models using emergency medicine (or ED) data. Methods We proposed a 3-step approach to deal with data quality issues: a random forest (RF) for missing values, k-means for imbalanced data, and principal component analysis (PCA) for sparse features. For continuous and discrete variables, the decision coefficient R2 and the κ coefficient were used to evaluate performance, respectively. The area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) were used to estimate the model’s performance. To further evaluate the proposed approach, we carried out a case study using an ED data set obtained from the Hainan Hospital of Chinese PLA General Hospital. A logistic regression (LR) prediction model for patient condition worsening was built. Results A total of 1085 patients with rescue records and 17,959 patients without rescue records were selected and significantly imbalanced. We extracted 275, 402, and 891 variables from laboratory tests, medications, and diagnosis, respectively. After data preprocessing, the median R2 of the RF continuous variable interpolation was 0.623 (IQR 0.647), and the median of the κ coefficient for discrete variable interpolation was 0.444 (IQR 0.285). The LR model constructed using the initial diagnostic data showed poor performance and variable separation, which was reflected in the abnormally high odds ratio (OR) values of the 2 variables of cardiac arrest and respiratory arrest (201568034532 and 1211118945, respectively) and an abnormal 95% CI. Using processed data, the recall of the model reached 0.746, the F1-score was 0.73, and the AUROC was 0.708. Conclusions The proposed systematic approach is valid for building a prediction model for emergency patients.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3