Bandwidth Improvement in Ultrasound Image Reconstruction Using Deep Learning Techniques

Author:

Awasthi NavchetanORCID,van Anrooij Laslo,Jansen GinoORCID,Schwab Hans-Martin,Pluim Josien P. W.,Lopata Richard G. P.

Abstract

Ultrasound (US) imaging is a medical imaging modality that uses the reflection of sound in the range of 2–18 MHz to image internal body structures. In US, the frequency bandwidth (BW) is directly associated with image resolution. BW is a property of the transducer and more bandwidth comes at a higher cost. Thus, methods that can transform strongly bandlimited ultrasound data into broadband data are essential. In this work, we propose a deep learning (DL) technique to improve the image quality for a given bandwidth by learning features provided by broadband data of the same field of view. Therefore, the performance of several DL architectures and conventional state-of-the-art techniques for image quality improvement and artifact removal have been compared on in vitro US datasets. Two training losses have been utilized on three different architectures: a super resolution convolutional neural network (SRCNN), U-Net, and a residual encoder decoder network (REDNet) architecture. The models have been trained to transform low-bandwidth image reconstructions to high-bandwidth image reconstructions, to reduce the artifacts, and make the reconstructions visually more attractive. Experiments were performed for 20%, 40%, and 60% fractional bandwidth on the original images and showed that the improvements obtained are as high as 45.5% in RMSE, and 3.85 dB in PSNR, in datasets with a 20% bandwidth limitation.

Funder

High Tech for a Sustainable Future

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Reference63 articles.

1. Application of Ultrasound in Medicine;Carovac;Acta Inform. Medica,2011

2. Ultrasound imaging;Wells;Phys. Med. Biol.,2006

3. Ultrafast cardiac ultrasound imaging: Technical principles, applications, and clinical benefits;Cikes;JACC Cardiovasc. Imaging,2014

4. Contrast-enhanced ultrasound in abdominal imaging;Nicolau;Abdom. Imaging,2012

5. A short history of the development of ultrasound in obstetrics and gynecology;Woo;Hist. Ultrasound Obstet. Gynecol.,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3