Deep Learning for Point-of-Care Ultrasound Image Quality Enhancement: A Review

Author:

van der Pol Hilde G. A.12,van Karnenbeek Lennard M.1,Wijkhuizen Mark1,Geldof Freija1ORCID,Dashtbozorg Behdad1ORCID

Affiliation:

1. Image-Guided Surgery, Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands

2. Technical Medicine, Faculty of Mechanical, Maritime, and Materials Engineering (3ME), Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

Abstract

The popularity of handheld devices for point-of-care ultrasound (POCUS) has increased in recent years due to their portability and cost-effectiveness. However, POCUS has the drawback of lower imaging quality compared to conventional ultrasound because of hardware limitations. Improving the quality of POCUS through post-image processing would therefore be beneficial, with deep learning approaches showing promise in this regard. This review investigates the state-of-the-art progress of image enhancement using deep learning suitable for POCUS applications. A systematic search was conducted from January 2024 to February 2024 on PubMed and Scopus. From the 457 articles that were found, the full text was retrieved for 69 articles. From this selection, 15 articles were identified addressing multiple quality enhancement aspects. A disparity in the baseline performance of the low-quality input images was seen across these studies, ranging between 8.65 and 29.24 dB for the Peak Signal-to-Noise Ratio (PSNR) and between 0.03 an 0.71 for the Structural Similarity Index Measure (SSIM). In six studies, where both the PSNR and the SSIM metrics were reported for the baseline and the generated images, mean differences of 6.60 (SD ± 2.99) and 0.28 (SD ± 0.15) were observed for the PSNR and SSIM, respectively. The reported performance outcomes demonstrate the potential of deep learning-based image enhancement for POCUS. However, variability in the extent of the performance gain across datasets and articles was notable, and the heterogeneity across articles makes quantifying the exact improvements challenging.

Funder

Dutch Cancer Society

Dutch Ministry of Health, Welfare and Sport

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3