A New Artificial Intelligence Approach Using Extreme Learning Machine as the Potentially Effective Model to Predict and Analyze the Diagnosis of Anemia

Author:

Saputra Dimas Chaerul Ekty1ORCID,Sunat Khamron1,Ratnaningsih Tri2ORCID

Affiliation:

1. Department of Computer Science and Information Technology, College of Computing, Khon Kaen University, Khon Kaen 40000, Thailand

2. Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

Abstract

The procedure to diagnose anemia is time-consuming and resource-intensive due to the existence of a multitude of symptoms that can be felt physically or seen visually. Anemia also has several forms, which can be distinguished based on several characteristics. It is possible to diagnose anemia through a quick, affordable, and easily accessible laboratory test known as the complete blood count (CBC), but the method cannot directly identify different kinds of anemia. Therefore, further tests are required to establish a gold standard for the type of anemia in a patient. These tests are uncommon in settings that offer healthcare on a smaller scale because they require expensive equipment. Moreover, it is also difficult to discern between beta thalassemia trait (BTT), iron deficiency anemia (IDA), hemoglobin E (HbE), and combination anemias despite the presence of multiple red blood cell (RBC) formulas and indices with differing optimal cutoff values. This is due to the existence of several varieties of anemia in individuals, making it difficult to distinguish between BTT, IDA, HbE, and combinations. Therefore, a more precise and automated prediction model is proposed to distinguish these four types to accelerate the identification process for doctors. Historical data were retrieved from the Laboratory of the Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia for this purpose. Furthermore, the model was developed using the algorithm for the extreme learning machine (ELM). This was followed by the measurement of the performance using the confusion matrix and 190 data representing the four classes, and the results showed 99.21% accuracy, 98.44% sensitivity, 99.30% precision, and an F1 score of 98.84%.

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3