FIDChain: Federated Intrusion Detection System for Blockchain-Enabled IoT Healthcare Applications

Author:

Ashraf EmanORCID,Areed Nihal F. F.,Salem HanaaORCID,Abdelhay Ehab H.ORCID,Farouk AhmedORCID

Abstract

Recently, there has been considerable growth in the internet of things (IoT)-based healthcare applications; however, they suffer from a lack of intrusion detection systems (IDS). Leveraging recent technologies, such as machine learning (ML), edge computing, and blockchain, can provide suitable and strong security solutions for preserving the privacy of medical data. In this paper, FIDChain IDS is proposed using lightweight artificial neural networks (ANN) in a federated learning (FL) way to ensure healthcare data privacy preservation with the advances of blockchain technology that provides a distributed ledger for aggregating the local weights and then broadcasting the updated global weights after averaging, which prevents poisoning attacks and provides full transparency and immutability over the distributed system with negligible overhead. Applying the detection model at the edge protects the cloud if an attack happens, as it blocks the data from its gateway with smaller detection time and lesser computing and processing capacity as FL deals with smaller sets of data. The ANN and eXtreme Gradient Boosting (XGBoost) models were evaluated using the BoT-IoT dataset. The results show that ANN models have higher accuracy and better performance with the heterogeneity of data in IoT devices, such as intensive care unit (ICU) in healthcare systems. Testing the FIDChain with different datasets (CSE-CIC-IDS2018, Bot Net IoT, and KDD Cup 99) reveals that the BoT-IoT dataset has the most stable and accurate results for testing IoT applications, such as those used in healthcare systems.

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Reference57 articles.

1. Healthcare monitoring system using IoT;Shaikh;Proceedings of the 2017 International Conference on Trends in Electronics and Informatics (ICEI),2017

2. A cooperative Internet of Things (IoT) for rural healthcare monitoring and control;Rohokale;Proceedings of the 2nd International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE),2011

3. Improving security of medical big data by using Blockchain technology

4. A Controllable Secure Blockchain-Based Electronic Healthcare Records Sharing Scheme

5. A Taxonomic Review of the Use of IoT and Blockchain in Healthcare Applications

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3