Lightweight, Trust-Managing, and Privacy-Preserving Collaborative Intrusion Detection for Internet of Things

Author:

Wardana Aulia Arif1ORCID,Kołaczek Grzegorz1ORCID,Sukarno Parman2ORCID

Affiliation:

1. Department of Computer Science and Systems Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland

2. School of Computing, Telkom University, Bandung 40257, Indonesia

Abstract

This research introduces a comprehensive collaborative intrusion detection system (CIDS) framework aimed at bolstering the security of Internet of Things (IoT) environments by synergistically integrating lightweight architecture, trust management, and privacy-preserving mechanisms. The proposed hierarchical architecture spans edge, fog, and cloud layers, ensuring efficient and scalable collaborative intrusion detection. Trustworthiness is established through the incorporation of distributed ledger technology (DLT), leveraging blockchain frameworks to enhance the reliability and transparency of communication among IoT devices. Furthermore, the research adopts federated learning (FL) techniques to address privacy concerns, allowing devices to collaboratively learn from decentralized data sources while preserving individual data privacy. Validation of the proposed approach is conducted using the CICIoT2023 dataset, demonstrating its effectiveness in enhancing the security posture of IoT ecosystems. This research contributes to the advancement of secure and resilient IoT infrastructures, addressing the imperative need for lightweight, trust-managing, and privacy-preserving solutions in the face of evolving cybersecurity challenges. According to our experiments, the proposed model achieved an average accuracy of 97.65%, precision of 97.65%, recall of 100%, and F1-score of 98.81% when detecting various attacks on IoT systems with heterogeneous devices and networks. The system is a lightweight system when compared with traditional intrusion detection that uses centralized learning in terms of network latency and memory consumption. The proposed system shows trust and can keep private data in an IoT environment.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3