Testing the Multi-Theory Model (MTM) to Predict the Use of New Technology for Social Connectedness in the COVID-19 Pandemic

Author:

Sharma ManojORCID,Batra KavitaORCID,Flatt Jason

Abstract

Loneliness or social isolation, recently described as a “behavioral epidemic,” remains a long-standing public health issue, which has worsened during the COVID-19 pandemic. The use of technology has been suggested to enhance social connectedness and to decrease the negative health outcomes associated with social isolation. However, till today, no theory-based studies were performed to examine the determinants of technology use. Therefore, the current study aims to test theory-based determinants in explaining the adoption of new technology in a nationally representative sample during the COVID-19 pandemic (n = 382). A psychometrically reliable and valid instrument based on the multi-theory model (MTM) of health behavior change was administered electronically using a cross-sectional study design. A total of 47.1% of the respondents reported high levels of social isolation, and 40.6% did not use any new technology. Among technology users (59.4%), the three initiation constructs participatory dialogue (b = 0.054, p < 0.05), behavioral confidence (b = 0.184, p < 0.001), and changes in the physical environment (b= 0.053, p < 0.05) were significant and accounted for 38.3% of the variance in the initiation of new technologies. Concerning sustenance in technology users, all three constructs emotional transformation (b = 0.115, p < 0.001), practice for change (b = 0.086, p < 0.001), and changes in the social environment (b = 0.061, p < 0.001) were significant and accounted for 42.6% of the variance in maintaining the use of new technology. MTM offers a powerful framework to design health promotion interventions encouraging the use of new technologies to foster greater social connectedness amid the COVID-19 pandemic and beyond it.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3