Evaluating Machine Learning Stability in Predicting Depression and Anxiety Amidst Subjective Response Errors

Author:

Ku Wai Lim1ORCID,Min Hua2ORCID

Affiliation:

1. Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA

2. Department of Health Administration and Policy, College of Public Health, George Mason University, Fairfax, VA 22030, USA

Abstract

Major Depressive Disorder (MDD) and Generalized Anxiety Disorder (GAD) pose significant burdens on individuals and society, necessitating accurate prediction methods. Machine learning (ML) algorithms utilizing electronic health records and survey data offer promising tools for forecasting these conditions. However, potential bias and inaccuracies inherent in subjective survey responses can undermine the precision of such predictions. This research investigates the reliability of five prominent ML algorithms—a Convolutional Neural Network (CNN), Random Forest, XGBoost, Logistic Regression, and Naive Bayes—in predicting MDD and GAD. A dataset rich in biomedical, demographic, and self-reported survey information is used to assess the algorithms’ performance under different levels of subjective response inaccuracies. These inaccuracies simulate scenarios with potential memory recall bias and subjective interpretations. While all algorithms demonstrate commendable accuracy with high-quality survey data, their performance diverges significantly when encountering erroneous or biased responses. Notably, the CNN exhibits superior resilience in this context, maintaining performance and even achieving enhanced accuracy, Cohen’s kappa score, and positive precision for both MDD and GAD. This highlights the CNN’s superior ability to handle data unreliability, making it a potentially advantageous choice for predicting mental health conditions based on self-reported data. These findings underscore the critical importance of algorithmic resilience in mental health prediction, particularly when relying on subjective data. They emphasize the need for careful algorithm selection in such contexts, with the CNN emerging as a promising candidate due to its robustness and improved performance under data uncertainties.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3