Detecting Careless Responding in Survey Data Using Stochastic Gradient Boosting

Author:

Schroeders Ulrich1ORCID,Schmidt Christoph2,Gnambs Timo3ORCID

Affiliation:

1. University of Kassel, Kassel, Germany

2. eoda GmbH, Kassel, Germany

3. Leibniz Institute for Educational Trajectories, Bamberg, Germany

Abstract

Careless responding is a bias in survey responses that disregards the actual item content, constituting a threat to the factor structure, reliability, and validity of psychological measurements. Different approaches have been proposed to detect aberrant responses such as probing questions that directly assess test-taking behavior (e.g., bogus items), auxiliary or paradata (e.g., response times), or data-driven statistical techniques (e.g., Mahalanobis distance). In the present study, gradient boosted trees, a state-of-the-art machine learning technique, are introduced to identify careless respondents. The performance of the approach was compared with established techniques previously described in the literature (e.g., statistical outlier methods, consistency analyses, and response pattern functions) using simulated data and empirical data from a web-based study, in which diligent versus careless response behavior was experimentally induced. In the simulation study, gradient boosting machines outperformed traditional detection mechanisms in flagging aberrant responses. However, this advantage did not transfer to the empirical study. In terms of precision, the results of both traditional and the novel detection mechanisms were unsatisfactory, although the latter incorporated response times as additional information. The comparison between the results of the simulation and the online study showed that responses in real-world settings seem to be much more erratic than can be expected from the simulation studies. We critically discuss the generalizability of currently available detection methods and provide an outlook on future research on the detection of aberrant response patterns in survey research.

Publisher

SAGE Publications

Subject

Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3