Optical Properties of Mn-Doped CuGa(In)S-ZnS Nanocrystals (NCs): Effects of Host NC and Mn Concentration

Author:

Lee Bryan,Hegseth Tristan,Zhu Xiaoshan

Abstract

Time-gated fluorescence measurement (TGFM) using long-life fluorescence probes is a highly sensitive fluorescence-measurement technology due to the inherently high signal-to-background ratio. Although many probes for TGFM such as luminescent-metal-complex probes and lanthanide-doped nanoparticles are in development, they generally need sophisticated/expensive instruments for biosensing/imaging applications. Probes possessing high brightness, low-energy (visible light) excitation, and long lifetimes up to milliseconds of luminescence, are highly desired in order to simplify the optical and electronic design of time-gated instruments (e.g., adopting non-UV-grade optics or low-speed electronics), lower the instrument complexity and cost, and facilitate broader applications of TGFM. In this work, we developed Mn-doped CuGa(In)S-ZnS nanocrystals (NCs) using simple and standard synthetic steps to achieve all the desired optical features in order to investigate how the optical properties (fluorescence/absorption spectra, brightness, and lifetimes) of the Mn-doped NCs are affected by different host NCs and Mn concentrations in host NCs. With optimal synthetic conditions, a library of Mn-doped NCs was achieved that possessed high brightness (up to 47% quantum yield), low-energy excitation (by 405 nm visible light), and long lifetimes (up to 3.67 ms). Additionally, the time-domain fluorescence characteristics of optimal Mn-doped NCs were measured under pulsed 405 nm laser excitation and bandpass-filter-based emission collection. The measurement results indicate the feasibility of these optimal Mn-doped NCs in TGFM-based biosensing/imaging.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3